Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Am Heart Assoc ; 13(7): e031796, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38533961

RESUMO

BACKGROUND: Phosphodiesterases degrade cyclic GMP (cGMP), the second messenger that mediates the cardioprotective effects of natriuretic peptides. High natriuretic peptide/cGMP ratio may reflect, in part, phosphodiesterase activity. Correlates of natriuretic peptide/cGMP in patients with heart failure with preserved ejection fraction are not well understood. Among patients with heart failure with preserved ejection fraction in the RELAX (Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Heart Failure With Preserved Ejection Fraction) trial, we examined (1) cross-sectional correlates of circulating NT-proBNP (N-terminal pro-B-type natriuretic peptide)/cGMP ratio, (2) whether selective phosphodiesterase-5 inhibition by sildenafil changed the ratio, and (3) whether the effect of sildenafil on 24-week outcomes varied by baseline ratio. METHODS AND RESULTS: In 212 subjects, NT-proBNP/cGMP ratio was calculated at randomization and 24 weeks. Correlates of the ratio and its change were examined in multivariable proportional odds models. Whether baseline ratio modified the sildenafil effect on outcomes was examined by interaction terms. Higher NT-proBNP/cGMP ratio was associated with greater left ventricular mass and troponin, the presence of atrial fibrillation, and lower estimated glomerular filtration rate and peak oxygen consumption. Compared with placebo, sildenafil did not alter the ratio from baseline to 24 weeks (P=0.17). The effect of sildenafil on 24-week change in peak oxygen consumption, left ventricular mass, or clinical composite outcome was not modified by baseline NT-proBNP/cGMP ratio (P-interaction >0.30 for all). CONCLUSIONS: Among patients with heart failure with preserved ejection fraction, higher NT-proBNP/cGMP ratio associated with an adverse cardiorenal phenotype, which was not improved by selective phosphodiesterase-5 inhibition. Other phosphodiesterases may be greater contributors than phosphodiesterase-5 to the adverse phenotype associated with a high natriuretic peptide/cGMP ratio in HFpEF. REGISTRATION INFORMATION: clinicaltrials.gov. Identifier: NCT00763867.


Assuntos
Insuficiência Cardíaca , Peptídeo Natriurético Encefálico , Humanos , Biomarcadores , Estudos Transversais , GMP Cíclico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5 , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Fragmentos de Peptídeos , Citrato de Sildenafila/farmacologia , Volume Sistólico/fisiologia
2.
Elife ; 122023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930356

RESUMO

The canonical target of the glucagon-like peptide-1 receptor (GLP-1R), Protein Kinase A (PKA), has been shown to stimulate mechanistic Target of Rapamycin Complex 1 (mTORC1) by phosphorylating the mTOR-regulating protein Raptor at Ser791 following ß-adrenergic stimulation. The objective of these studies is to test whether GLP-1R agonists similarly stimulate mTORC1 via PKA phosphorylation of Raptor at Ser791 and whether this contributes to the weight loss effect of the therapeutic GLP-1R agonist liraglutide. We measured phosphorylation of the mTORC1 signaling target ribosomal protein S6 in Chinese Hamster Ovary cells expressing GLP-1R (CHO-Glp1r) treated with liraglutide in combination with PKA inhibitors. We also assessed liraglutide-mediated phosphorylation of the PKA substrate RRXS*/T* motif in CHO-Glp1r cells expressing Myc-tagged wild-type (WT) Raptor or a PKA-resistant (Ser791Ala) Raptor mutant. Finally, we measured the body weight response to liraglutide in WT mice and mice with a targeted knock-in of PKA-resistant Ser791Ala Raptor. Liraglutide increased phosphorylation of S6 and the PKA motif in WT Raptor in a PKA-dependent manner but failed to stimulate phosphorylation of the PKA motif in Ser791Ala Raptor in CHO-Glp1r cells. Lean Ser791Ala Raptor knock-in mice were resistant to liraglutide-induced weight loss but not setmelanotide-induced (melanocortin-4 receptor-dependent) weight loss. Diet-induced obese Ser791Ala Raptor knock-in mice were not resistant to liraglutide-induced weight loss; however, there was weight-dependent variation such that there was a tendency for obese Ser791Ala Raptor knock-in mice of lower relative body weight to be resistant to liraglutide-induced weight loss compared to weight-matched controls. Together, these findings suggest that PKA-mediated phosphorylation of Raptor at Ser791 contributes to liraglutide-induced weight loss.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Liraglutida , Proteína Regulatória Associada a mTOR , Redução de Peso , Animais , Cricetinae , Camundongos , Células CHO , Cricetulus , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Liraglutida/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Obesidade/tratamento farmacológico , Fosforilação , Proteína Regulatória Associada a mTOR/metabolismo
3.
PLoS One ; 18(11): e0293636, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37917630

RESUMO

Natriuretic peptides (NP), including atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP), play essential roles in regulating blood pressure, cardiovascular homeostasis, and systemic metabolism. One of the major metabolic effects of NP is manifested by their capacity to stimulate lipolysis and the thermogenesis gene program in adipocytes, however, in skeletal muscle their effects on metabolism and muscle function are not as well understood. There are three NP receptors (NPR): NPRA, NPRB, and NPRC, and all three NPR genes are expressed in skeletal muscle and C2C12 myocytes. In C2C12 myocytes treatment with either ANP, BNP, or CNP evokes the cGMP signaling pathway. Since NPRC functions as a clearance receptor and the amount of NPRC in a cell type determines the signaling strength of NPs, we generated a genetic model with Nprc gene deletion in skeletal muscle and tested whether enhancing NP signaling by preventing its clearance in skeletal muscle would improve exercise performance in mice. Under sedentary conditions, Nprc skeletal muscle knockout (MKO) mice showed comparable exercise performance to their floxed littermates in terms of maximal running velocity and total endurance running time. Eight weeks of voluntary running-wheel training in a young cohort significantly increased exercise performance, but no significant differences were observed in MKO compared with floxed control mice. Furthermore, 6-weeks of treadmill training in a relatively aged cohort also increased exercise performance compared with their baseline values, but again there were no differences between genotypes. In summary, our study suggests that NP signaling is potentially important in skeletal myocytes but its function in skeletal muscle in vivo needs to be further studied in additional physiological conditions or with new genetic mouse models.


Assuntos
Peptídeos Natriuréticos , Receptores do Fator Natriurético Atrial , Humanos , Camundongos , Animais , Idoso , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/metabolismo , Peptídeos Natriuréticos/metabolismo , Receptores de Peptídeos , Peptídeo Natriurético Tipo C/genética , Camundongos Knockout , Vasodilatadores , Músculo Esquelético/metabolismo , Fator Natriurético Atrial/farmacologia , Peptídeo Natriurético Encefálico
4.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37561580

RESUMO

Negative regulation of exocytosis from secretory cells is accomplished through inhibitory signals from Gi/o GPCRs by Gßγ subunit inhibition of 2 mechanisms: decreased calcium entry and direct interaction of Gßγ with soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) plasma membrane fusion machinery. Previously, we disabled the second mechanism with a SNAP25 truncation (SNAP25Δ3) that decreased Gßγ affinity for the SNARE complex, leaving exocytotic fusion and modulation of calcium entry intact and removing GPCR-Gßγ inhibition of SNARE-mediated exocytosis. Here, we report substantial metabolic benefit in mice carrying this mutation. Snap25Δ3/Δ3 mice exhibited enhanced insulin sensitivity and beiging of white fat. Metabolic protection was amplified in Snap25Δ3/Δ3 mice challenged with a high-fat diet. Glucose homeostasis, whole-body insulin action, and insulin-mediated glucose uptake into white adipose tissue were improved along with resistance to diet-induced obesity. Metabolic protection in Snap25Δ3/Δ3 mice occurred without compromising the physiological response to fasting or cold. All metabolic phenotypes were reversed at thermoneutrality, suggesting that basal autonomic activity was required. Direct electrode stimulation of sympathetic neuron exocytosis from Snap25Δ3/Δ3 inguinal adipose depots resulted in enhanced and prolonged norepinephrine release. Thus, the Gßγ-SNARE interaction represents a cellular mechanism that deserves further exploration as an additional avenue for combating metabolic disease.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Insulinas , Camundongos , Animais , Cálcio/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Exocitose/fisiologia , Proteínas SNARE/genética , Dieta , Obesidade/genética , Adipócitos/metabolismo , Insulinas/metabolismo , Insulina/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(28): e2307882120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399424

RESUMO

The cardiac natriuretic peptides (NPs) control pivotal physiological actions such as fluid and electrolyte balance, cardiovascular homeostasis, and adipose tissue metabolism by activating their receptor enzymes [natriuretic peptide receptor-A (NPRA) and natriuretic peptide receptor-B (NPRB)]. These receptors are homodimers that generate intracellular cyclic guanosine monophosphate (cGMP). The natriuretic peptide receptor-C (NPRC), nicknamed the clearance receptor, lacks a guanylyl cyclase domain; instead, it can bind the NPs to internalize and degrade them. The conventional paradigm is that by competing for and internalizing NPs, NPRC blunts the ability of NPs to signal through NPRA and NPRB. Here we show another previously unknown mechanism by which NPRC can interfere with the cGMP signaling function of the NP receptors. By forming a heterodimer with monomeric NPRA or NPRB, NPRC can prevent the formation of a functional guanylyl cyclase domain and thereby suppress cGMP production in a cell-autonomous manner.


Assuntos
Guanilato Ciclase , Receptores do Fator Natriurético Atrial , Guanilato Ciclase/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Receptores de Peptídeos/metabolismo , Peptídeos Natriuréticos , Transdução de Sinais , Fator Natriurético Atrial/metabolismo , GMP Cíclico/metabolismo
6.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511253

RESUMO

The mechanistic target of rapamycin (mTOR) kinase is a central regulator of cell growth and metabolism. It is the catalytic subunit of two distinct large protein complexes, mTOR complex 1 (mTORC1) and mTORC2. mTOR activity is subjected to tight regulation in response to external nutrition and growth factor stimulation. As an important mechanism of signaling transduction, the 'second messenger' cyclic nucleotides including cAMP and cGMP and their associated cyclic nucleotide-dependent kinases, including protein kinase A (PKA) and protein kinase G (PKG), play essential roles in mediating the intracellular action of a variety of hormones and neurotransmitters. They have also emerged as important regulators of mTOR signaling in various physiological and disease conditions. However, the mechanism by which cAMP and cGMP regulate mTOR activity is not completely understood. In this review, we will summarize the earlier work establishing the ability of cAMP to dampen mTORC1 activation in response to insulin and growth factors and then discuss our recent findings demonstrating the regulation of mTOR signaling by the PKA- and PKG-dependent signaling pathways. This signaling framework represents a new non-canonical regulation of mTOR activity that is independent of AKT and could be a novel mechanism underpinning the action of a variety of G protein-coupled receptors that are linked to the mTOR signaling network. We will further review the implications of these signaling events in the context of cardiometabolic disease, such as obesity, non-alcoholic fatty liver disease, and cardiac remodeling. The metabolic and cardiac phenotypes of mouse models with targeted deletion of Raptor and Rictor, the two essential components for mTORC1 and mTORC2, will be summarized and discussed.


Assuntos
Doenças Cardiovasculares , Complexos Multiproteicos , Sirolimo , Serina-Treonina Quinases TOR , Animais , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismo
7.
Mol Metab ; 74: 101753, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321371

RESUMO

OBJECTIVE: Norepinephrine stimulates the adipose tissue thermogenic program through a ß-adrenergic receptor (ßAR)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling cascade. We discovered that a noncanonical activation of the mechanistic target of rapamycin complex 1 (mTORC1) by PKA is required for the ßAR-stimulation of adipose tissue browning. However, the downstream events triggered by PKA-phosphorylated mTORC1 activation that drive this thermogenic response are not well understood. METHODS: We used a proteomic approach of Stable Isotope Labeling by/with Amino acids in Cell culture (SILAC) to characterize the global protein phosphorylation profile in brown adipocytes treated with the ßAR agonist. We identified salt-inducible kinase 3 (SIK3) as a candidate mTORC1 substrate and further tested the effect of SIK3 deficiency or SIK inhibition on the thermogenic gene expression program in brown adipocytes and in mouse adipose tissue. RESULTS: SIK3 interacts with RAPTOR, the defining component of the mTORC1 complex, and is phosphorylated at Ser884 in a rapamycin-sensitive manner. Pharmacological SIK inhibition by a pan-SIK inhibitor (HG-9-91-01) in brown adipocytes increases basal Ucp1 gene expression and restores its expression upon blockade of either mTORC1 or PKA. Short-hairpin RNA (shRNA) knockdown of Sik3 augments, while overexpression of SIK3 suppresses, Ucp1 gene expression in brown adipocytes. The regulatory PKA phosphorylation domain of SIK3 is essential for its inhibition. CRISPR-mediated Sik3 deletion in brown adipocytes increases type IIa histone deacetylase (HDAC) activity and enhances the expression of genes involved in thermogenesis such as Ucp1, Pgc1α, and mitochondrial OXPHOS complex protein. We further show that HDAC4 interacts with PGC1α after ßAR stimulation and reduces lysine acetylation in PGC1α. Finally, a SIK inhibitor well-tolerated in vivo (YKL-05-099) can stimulate the expression of thermogenesis-related genes and browning of mouse subcutaneous adipose tissue. CONCLUSIONS: Taken together, our data reveal that SIK3, with the possible contribution of other SIKs, functions as a phosphorylation switch for ß-adrenergic activation to drive the adipose tissue thermogenic program and indicates that more work to understand the role of the SIKs is warranted. Our findings also suggest that maneuvers targeting SIKs could be beneficial for obesity and related cardiometabolic disease.


Assuntos
Tecido Adiposo , Proteômica , Camundongos , Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Tecido Adiposo/metabolismo , Adipócitos Marrons/metabolismo , Receptores Adrenérgicos beta/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Termogênese , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
8.
Physiol Rep ; 11(4): e15576, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36807778

RESUMO

Brown adipose tissue (BAT) has in recent times been rediscovered in adult humans, and together with work from preclinical models, has shown to have the potential of providing a variety of positive metabolic benefits. These include lower plasma glucose, improved insulin sensitivity, and reduced susceptibility to obesity and its comorbidities. As such, its continued study could offer insights to therapeutically modulate this tissue to improve metabolic health. It has been reported that adipose-specific deletion of the gene for protein kinase D1 (Prkd1) in mice enhances mitochondrial respiration and improves whole-body glucose homeostasis. We sought to determine whether these effects were mediated specifically through brown adipocytes using a Prkd1 brown adipose tissue (BAT) Ucp1-Cre-specific knockout mouse model, Prkd1BKO . We unexpectedly observed that upon both cold exposure and ß3 -AR agonist administration, Prkd1 loss in BAT did not alter canonical thermogenic gene expression or adipocyte morphology. We took an unbiased approach to assess whether other signaling pathways were affected. RNA from cold-exposed mice was subjected to RNA-Seq analysis. These studies revealed that myogenic gene expression is altered in Prkd1BKO BAT after both acute and extended cold exposure. Given that brown adipocytes and skeletal myocytes share a common precursor cell lineage expressing myogenic factor 5 (Myf5), these data suggest that loss of Prkd1 in BAT may alter the biology of mature brown adipocytes and preadipocytes in this depot. The data presented herein clarify the role of Prkd1 in BAT thermogenesis and present new avenues for the further study of Prkd1 function in BAT.


Assuntos
Tecido Adiposo Marrom , Transdução de Sinais , Humanos , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Obesidade/metabolismo , Camundongos Knockout , Termogênese/fisiologia , Expressão Gênica , Proteínas Quinases/metabolismo , Camundongos Endogâmicos C57BL
9.
Mol Metab ; 67: 101651, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481344

RESUMO

OBJECTIVE: Oxidative stress contributes to the development of insulin resistance (IR) and atherosclerosis. Peroxidation of lipids produces reactive dicarbonyls such as Isolevuglandins (IsoLG) and malondialdehyde (MDA) that covalently bind plasma/cellular proteins, phospholipids, and DNA leading to altered function and toxicity. We examined whether scavenging reactive dicarbonyls with 5'-O-pentyl-pyridoxamine (PPM) protects against the development of IR and atherosclerosis in Ldlr-/- mice. METHODS: Male or female Ldlr-/- mice were fed a western diet (WD) for 16 weeks and treated with PPM versus vehicle alone. Plaque extent, dicarbonyl-lysyl adducts, efferocytosis, apoptosis, macrophage inflammation, and necrotic area were measured. Plasma MDA-LDL adducts and the in vivo and in vitro effects of PPM on the ability of HDL to reduce macrophage cholesterol were measured. Blood Ly6Chi monocytes and ex vivo 5-ethynyl-2'-deoxyuridine (EdU) incorporation into bone marrow CD11b+ monocytes and CD34+ hematopoietic stem and progenitor cells (HSPC) were also examined. IR was examined by measuring fasting glucose/insulin levels and tolerance to insulin/glucose challenge. RESULTS: PPM reduced the proximal aortic atherosclerosis by 48% and by 46% in female and male Ldlr-/- mice, respectively. PPM also decreased IR and hepatic fat and inflammation in male Ldlr-/- mice. Importantly, PPM decreased plasma MDA-LDL adducts and prevented the accumulation of plaque MDA- and IsoLG-lysyl adducts in Ldlr-/- mice. In addition, PPM increased the net cholesterol efflux capacity of HDL from Ldlr-/- mice and prevented both the in vitro impairment of HDL net cholesterol efflux capacity and apoAI crosslinking by MPO generated hypochlorous acid. Moreover, PPM decreased features of plaque instability including decreased proinflammatory M1-like macrophages, IL-1ß expression, myeloperoxidase, apoptosis, and necrotic core. In contrast, PPM increased M2-like macrophages, Tregs, fibrous cap thickness, and efferocytosis. Furthermore, PPM reduced inflammatory monocytosis as evidenced by decreased blood Ly6Chi monocytes and proliferation of bone marrow monocytes and HSPC from Ldlr-/- mice. CONCLUSIONS: PPM has pleotropic atheroprotective effects in a murine model of familial hypercholesterolemia, supporting the therapeutic potential of reactive dicarbonyl scavenging in the treatment of IR and atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , Resistência à Insulina , Insulinas , Placa Aterosclerótica , Masculino , Feminino , Camundongos , Animais , HDL-Colesterol/uso terapêutico , Piridoxamina , Camundongos Knockout , Aterosclerose/metabolismo , Colesterol/metabolismo , Inflamação/tratamento farmacológico , Insulinas/uso terapêutico , Glucose
10.
Biomedicines ; 10(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36140428

RESUMO

Chronic hypercortisolism has been associated with the development of several metabolic alterations, mostly caused by the effects of chronic glucocorticoid (GC) exposure over gene expression. The metabolic changes can be partially explained by the GC actions on different adipose tissues (ATs), leading to central obesity. In this regard, we aimed to characterize an experimental model of iatrogenic hypercortisolism in rats with significant AT redistribution. Male Wistar rats were distributed into control (CT) and GC-treated, which received dexamethasone sodium phosphate (0.5 mg/kg/day) by an osmotic minipump, for 4 weeks. GC-treated rats reproduced several characteristics observed in human hypercortisolism/Cushing's syndrome, such as HPA axis inhibition, glucose intolerance, insulin resistance, dyslipidemia, hepatic lipid accumulation, and AT redistribution. There was an increase in the mesenteric (meWAT), perirenal (prWAT), and interscapular brown (BAT) ATs mass, but a reduction of the retroperitoneal (rpWAT) mass compared to CT rats. Overexpressed lipolytic and lipogenic gene profiles were observed in white adipose tissue (WAT) of GC rats as BAT dysfunction and whitening. The AT remodeling in response to GC excess showed more importance than the increase of AT mass per se, and it cannot be explained just by GC regulation of gene transcription.

11.
Annu Rev Physiol ; 84: 1-16, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35143333

RESUMO

The role of ß-adrenergic receptors (ßARs) in adipose tissue to promote lipolysis and the release of fatty acids and nonshivering thermogenesis in brown fat has been studied for so many decades that one would think there is nothing left to discover. With the rediscovery of brown fat in humans and renewed interest in UCP1 and uncoupled mitochondrial respiration, it seems that a review of adipose tissue as an organ, pivotal observations, and the investigators who made them would be instructive to understanding where the field stands now. The discovery of the ß3-adrenergic receptor was important for accurately defining the pharmacology of the adipocyte, while the clinical targeting of this receptor for obesity and metabolic disease has had its highs and lows. Many questions still remain about how ßARs regulate adipocyte metabolism and the signaling molecules through which they do it.


Assuntos
Receptores Adrenérgicos beta , Termogênese , Adipócitos , Tecido Adiposo , Tecido Adiposo Marrom/fisiologia , Humanos , Lipólise , Receptores Adrenérgicos beta/metabolismo , Termogênese/fisiologia , Proteína Desacopladora 1/metabolismo
12.
Diabetes ; 70(12): 2823-2836, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34620617

RESUMO

Cyclic nucleotides cAMP and cGMP are important second messengers for the regulation of adaptive thermogenesis. Their levels are controlled not only by their synthesis, but also their degradation. Since pharmacological inhibitors of cGMP-specific phosphodiesterase 9 (PDE9) can increase cGMP-dependent protein kinase signaling and uncoupling protein 1 expression in adipocytes, we sought to elucidate the role of PDE9 on energy balance and glucose homeostasis in vivo. Mice with targeted disruption of the PDE9 gene, Pde9a, were fed nutrient-matched high-fat (HFD) or low-fat diets. Pde9a -/- mice were resistant to HFD-induced obesity, exhibiting a global increase in energy expenditure, while brown adipose tissue (AT) had increased respiratory capacity and elevated expression of Ucp1 and other thermogenic genes. Reduced adiposity of HFD-fed Pde9a -/- mice was associated with improvements in glucose handling and hepatic steatosis. Cold exposure or treatment with ß-adrenergic receptor agonists markedly decreased Pde9a expression in brown AT and cultured brown adipocytes, while Pde9a -/- mice exhibited a greater increase in AT browning, together suggesting that the PDE9-cGMP pathway augments classical cold-induced ß-adrenergic/cAMP AT browning and energy expenditure. These findings suggest PDE9 is a previously unrecognized regulator of energy metabolism and that its inhibition may be a valuable avenue to explore for combating metabolic disease.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/genética , Metabolismo Energético/genética , Obesidade/genética , Termogênese/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/prevenção & controle , Regulação para Cima/genética
13.
J Clin Invest ; 131(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34618683

RESUMO

Central obesity with cardiometabolic syndrome (CMS) is a major global contributor to human disease, and effective therapies are needed. Here, we show that cyclic GMP-selective phosphodiesterase 9A inhibition (PDE9-I) in both male and ovariectomized female mice suppresses preestablished severe diet-induced obesity/CMS with or without superimposed mild cardiac pressure load. PDE9-I reduces total body, inguinal, hepatic, and myocardial fat; stimulates mitochondrial activity in brown and white fat; and improves CMS, without significantly altering activity or food intake. PDE9 localized at mitochondria, and its inhibition in vitro stimulated lipolysis in a PPARα-dependent manner and increased mitochondrial respiration in both adipocytes and myocytes. PPARα upregulation was required to achieve the lipolytic, antiobesity, and metabolic effects of PDE9-I. All these PDE9-I-induced changes were not observed in obese/CMS nonovariectomized females, indicating a strong sexual dimorphism. We found that PPARα chromatin binding was reoriented away from fat metabolism-regulating genes when stimulated in the presence of coactivated estrogen receptor-α, and this may underlie the dimorphism. These findings have translational relevance given that PDE9-I is already being studied in humans for indications including heart failure, and efficacy against obesity/CMS would enhance its therapeutic utility.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Tecido Adiposo/embriologia , Síndrome Metabólica/enzimologia , Obesidade/enzimologia , 3',5'-AMP Cíclico Fosfodiesterases/genética , Animais , Feminino , Masculino , Síndrome Metabólica/genética , Camundongos , Camundongos Transgênicos , Mitocôndrias/enzimologia , Mitocôndrias/genética , Obesidade/genética , PPAR alfa/genética , PPAR alfa/metabolismo
14.
J Biol Chem ; 297(2): 100941, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34245781

RESUMO

The cardiac natriuretic peptides (NPs) are well established as regulators of blood pressure and fluid volume, but they also stimulate adipocyte lipolysis and control the gene program of nonshivering thermogenesis in brown adipose tissue. The NP "clearance" receptor C (NPRC) functions to clear NPs from the circulation via peptide internalization and degradation and thus is an important regulator of NP signaling and adipocyte metabolism. It is well known that the Nprc gene is highly expressed in adipose tissue and dynamically regulated upon nutrition and environmental changes. However, the molecular basis for how Nprc gene expression is regulated is still poorly understood. Here, we identified the nuclear receptor transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) as a transcriptional regulator of Nprc expression in mouse adipocytes. During 3T3-L1 adipocyte differentiation, levels of Nprc expression increase in parallel with PPARγ induction. Rosiglitazone, a classic PPARγ agonist, increases, whereas siRNA knockdown of PPARγ reduces, Nprc expression in 3T3-L1 adipocytes. By using chromosome conformation capture and luciferase reporter assays, we demonstrate that PPARγ controls Nprc gene expression in adipocytes through its long-range distal enhancers. Furthermore, the induction of Nprc expression in adipose tissue during high-fat diet feeding is found to be associated with increased PPARγ enhancer activity. Our findings define PPARγ as a mediator of adipocyte Nprc gene expression and establish a new connection between PPARγ and the control of adipocyte NP signaling in obesity.


Assuntos
Tecido Adiposo , Peptídeos Natriuréticos , PPAR gama , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia , Animais , Lipólise , Camundongos , Obesidade/metabolismo , Transdução de Sinais
15.
JACC Heart Fail ; 9(3): 192-200, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33422435

RESUMO

OBJECTIVES: The purpose of this study was to determine the frequency of unexpectedly low natriuretic peptide (NP) levels in a clinical population. BACKGROUND: Higher NP concentrations are typically observed as a compensatory response to elevated cardiac wall stress. Under these conditions, low NP levels may be indicative of a "NP deficiency." METHODS: We identified 3 clinical scenarios in which high B-type natriuretic peptide (BNP) levels would be expected: 1) hospitalization for heart failure (HF); 2) abnormal cardiac structure or function; or 3) abnormal hemodynamics. In Vanderbilt's electronic health record, 47,970 adult patients had BNP measurements. A total of 13,613 patients had at least 1 of the 3 conditions (hospitalized HF, n = 9,153; abnormal cardiac structure/function, n = 7,041; abnormal hemodynamics, n = 363). We quantified the frequency of low BNP levels. We performed whole exome sequencing of the NPPB gene in a subset of 9 patients. RESULTS: Very low BNP levels (<50 pg/ml) were observed in 4.9%, 14.0%, and 16.3% of patients with hospitalized HF, abnormal cardiac structure/function, or abnormal hemodynamics, respectively. A small proportion (0.1% to 1.1%) in each group had BNP levels below detection limits. Higher body mass index was the strongest predictor of unexpectedly low BNP. Exome sequencing did not reveal coding variation predicted to alter detection of BNP by clinical assays. CONCLUSIONS: A subset of patients with confirmed HF or cardiac dysfunction have unexpectedly low BNP levels. Obesity is the strongest correlate of unexpectedly low BNP levels. Our findings support the possible existence of NP deficiency, which may render some individuals more susceptible to volume or pressure overload.


Assuntos
Insuficiência Cardíaca , Adulto , Índice de Massa Corporal , Hospitalização , Humanos , Peptídeo Natriurético Encefálico , Peptídeos Natriuréticos
16.
Diabetes ; 69(11): 2324-2339, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32778569

RESUMO

Reduced activation of energy metabolism increases adiposity in humans and other mammals. Thus, exploring dietary and molecular mechanisms able to improve energy metabolism is of paramount medical importance because such mechanisms can be leveraged as a therapy for obesity and related disorders. Here, we show that a designer protein-deprived diet enriched in free essential amino acids can 1) promote the brown fat thermogenic program and fatty acid oxidation, 2) stimulate uncoupling protein 1 (UCP1)-independent respiration in subcutaneous white fat, 3) change the gut microbiota composition, and 4) prevent and reverse obesity and dysregulated glucose homeostasis in multiple mouse models, prolonging the healthy life span. These effects are independent of unbalanced amino acid ratio, energy consumption, and intestinal calorie absorption. A brown fat-specific activation of the mechanistic target of rapamycin complex 1 seems involved in the diet-induced beneficial effects, as also strengthened by in vitro experiments. Hence, our results suggest that brown and white fat may be targets of specific amino acids to control UCP1-dependent and -independent thermogenesis, thereby contributing to the improvement of metabolic health.


Assuntos
Aminoácidos/administração & dosagem , Proteínas na Dieta/administração & dosagem , Metabolismo Energético/fisiologia , Homeostase , Obesidade/dietoterapia , Adipocinas/metabolismo , Ração Animal/análise , Animais , Composição Corporal , Dieta , Proteínas na Dieta/análise , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Longevidade , Camundongos , Camundongos Endogâmicos C57BL
17.
Cell Rep ; 31(5): 107598, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375048

RESUMO

Here, we show that ß adrenergic signaling coordinately upregulates de novo lipogenesis (DNL) and thermogenesis in subcutaneous white adipose tissue (sWAT), and both effects are blocked in mice lacking the cAMP-generating G protein-coupled receptor Gs (Adipo-GsαKO) in adipocytes. However, UCP1 expression but not DNL activation requires rapamycin-sensitive mTORC1. Furthermore, ß3-adrenergic agonist CL316243 readily upregulates thermogenic but not lipogenic genes in cultured adipocytes, indicating that additional regulators must operate on DNL in sWAT in vivo. We identify one such factor as thyroid hormone T3, which is elevated locally by adrenergic signaling. T3 administration to wild-type mice enhances both thermogenesis and DNL in sWAT. Mechanistically, T3 action on UCP1 expression in sWAT depends upon cAMP and is blocked in Adipo-GsαKO mice even as elevated DNL persists. Thus, T3 enhances sWAT thermogenesis by amplifying cAMP signaling, while its control of adipocyte DNL can be mediated independently of both cAMP and rapamycin-sensitive mTORC1.


Assuntos
Adipócitos/metabolismo , Adrenérgicos/metabolismo , Termogênese/genética , Hormônios Tireóideos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Lipogênese/fisiologia , Camundongos Transgênicos , Transdução de Sinais/fisiologia
18.
Nat Commun ; 11(1): 2306, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385399

RESUMO

During ß-adrenergic stimulation of brown adipose tissue (BAT), p38 phosphorylates the activating transcription factor 2 (ATF2) which then translocates to the nucleus to activate the expression of Ucp1 and Pgc-1α. The mechanisms underlying ATF2 target activation are unknown. Here we demonstrate that p62 (Sqstm1) binds to ATF2 to orchestrate activation of the Ucp1 enhancer and Pgc-1α promoter. P62Δ69-251 mice show reduced expression of Ucp1 and Pgc-1α with impaired ATF2 genomic binding. Modulation of Ucp1 and Pgc-1α expression through p62 regulation of ATF2 signaling is demonstrated in vitro and in vivo in p62Δ69-251 mice, global p62-/- and Ucp1-Cre p62flx/flx mice. BAT dysfunction resulting from p62 deficiency is manifest after birth and obesity subsequently develops despite normal food intake, intestinal nutrient absorption and locomotor activity. In summary, our data identify p62 as a master regulator of BAT function in that it controls the Ucp1 pathway through regulation of ATF2 genomic binding.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Proteína Sequestossoma-1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Adipogenia/fisiologia , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/diagnóstico por imagem , Tecido Adiposo Branco/metabolismo , Animais , Núcleo Celular/metabolismo , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ligação Proteica , Proteína Sequestossoma-1/genética , Proteína Desacopladora 1/metabolismo
19.
Circulation ; 141(12): 1001-1026, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32202936

RESUMO

Heart failure with preserved ejection fraction (HFpEF), a major public health problem that is rising in prevalence, is associated with high morbidity and mortality and is considered to be the greatest unmet need in cardiovascular medicine today because of a general lack of effective treatments. To address this challenging syndrome, the National Heart, Lung, and Blood Institute convened a working group made up of experts in HFpEF and novel research methodologies to discuss research gaps and to prioritize research directions over the next decade. Here, we summarize the discussion of the working group, followed by key recommendations for future research priorities. There was uniform recognition that HFpEF is a highly integrated, multiorgan, systemic disorder requiring a multipronged investigative approach in both humans and animal models to improve understanding of mechanisms and treatment of HFpEF. It was recognized that advances in the understanding of basic mechanisms and the roles of inflammation, macrovascular and microvascular dysfunction, fibrosis, and tissue remodeling are needed and ideally would be obtained from (1) improved animal models, including large animal models, which incorporate the effects of aging and associated comorbid conditions; (2) repositories of deeply phenotyped physiological data and human tissue, made accessible to researchers to enhance collaboration and research advances; and (3) novel research methods that take advantage of computational advances and multiscale modeling for the analysis of complex, high-density data across multiple domains. The working group emphasized the need for interactions among basic, translational, clinical, and epidemiological scientists and across organ systems and cell types, leveraging different areas or research focus, and between research centers. A network of collaborative centers to accelerate basic, translational, and clinical research of pathobiological mechanisms and treatment strategies in HFpEF was discussed as an example of a strategy to advance research progress. This resource would facilitate comprehensive, deep phenotyping of a multicenter HFpEF patient cohort with standardized protocols and a robust biorepository. The research priorities outlined in this document are meant to stimulate scientific advances in HFpEF by providing a road map for future collaborative investigations among a diverse group of scientists across multiple domains.


Assuntos
Insuficiência Cardíaca/epidemiologia , Pesquisa/normas , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Volume Sistólico , Estados Unidos
20.
Clin Sci (Lond) ; 134(5): 473-512, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32149342

RESUMO

With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.


Assuntos
Tecido Adiposo/metabolismo , Metabolismo Energético , Nucleotídeos Cíclicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/citologia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Lipólise , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...